The nature of Hopf bifurcation for the Gompertz model with delays

نویسندگان

  • Monika J. Piotrowska
  • Urszula Forys
چکیده

In this paper, we study the influence of time delays on the dynamics of the classical Gompertz model. We consider the models with one discrete delay introduced in two different ways and the model with two delays which generalise those with one delay. We study asymptotic behaviour and bifurcations with respect to the ratio of delays τ̄ = τ1/τ2. Our results show that in such model with two delays there is only one stability switch and for a threshold value of bifurcation parameter, Hopf bifurcation (HB) occurs. However, the type of HB, and therefore its stability (i.e. stability of periodic orbits arising due to it), strongly depends on the magnitude of τ̄ . The function describing stability of HB is periodic with respect to τ̄ . Within one period of length 4 five changes of HB stability are observed. We also introduce the second model with two delays which has a better biological interpretation than the first one. In that model several stability switches can occur, depending on the model parameters. We illustrate analytical results on the example of tumour growth model with parameters estimated on the basis of experimental data. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...

متن کامل

A THREE DIMENSIONAL HTLV-1 MODEL WITH INTRACELLULAR AND IMMUNE ACTIVATION DELAYS

In this paper, a three dimensional mathematical model for HTLV-1infection with intracellular delay and immune activation delay is investigated.By applying the frequency domain approach, we show that time delays candestabilize the HAM/TSP equilibrium, leading to Hopf bifurcations and sta-ble or unstable periodic oscillations. At the end, numerical simulations areillustrated.

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011